Search results

1 – 2 of 2
Article
Publication date: 1 June 2015

Rachid Bouchenafa, Rachid Saim, Said Abboudi and Hakan F. Öztop

– The purpose of this paper is to examine the thermal and dynamic performance of the plate-fin heat sink fitted with a shield in the bypass.

Abstract

Purpose

The purpose of this paper is to examine the thermal and dynamic performance of the plate-fin heat sink fitted with a shield in the bypass.

Design/methodology/approach

The governing equations were solved using the finite volume method based on the SIMPLE algorithm. The k-ω Shear Stress Transport was used to model turbulence. The thermal and dynamic results were presented in term of average Nusselt number and friction factor, respectively. The effect of the height (Hs=6, 10 and 13) and the position (X=0, 1/3, 1/2, 2/3 and 3/4) of the shield was studied for a Reynolds number ranging from 2×103 to 12×103 and compared with a heat sink without shield. To evaluate the performance of different heat sink geometries, the efficiency was presented and discussed.

Findings

By adding a shield in the bypass, a greater amount of air is injected between the heat sink fins, which improves the heat transfer (advantage) of the one part, and increases the friction on the other hand (disadvantage). The efficiency of the heat sink varies inversely proportional with the Reynolds number.

Originality/value

The originality of this work is the method for enhancement of heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2020

Hamidou Benzenine, Rachid Saim, Said Abboudi, Hakan F. Öztop and Nidal Abu-Hamdeh

The purpose of this paper is to present a three-dimensional (3D) analysis of the laminar flow of air and the conjugate heat transfer in a pipe of rectangular cross-section with a…

Abstract

Purpose

The purpose of this paper is to present a three-dimensional (3D) analysis of the laminar flow of air and the conjugate heat transfer in a pipe of rectangular cross-section with a solid or perforated deflector inserted on the lower wall.

Design/methodology/approach

To this end, by using the finite volume method, the conservation equations for mass, momentum and energy are solved numerically. Two cases of “single and double” perforation were studied and compared with that of the solid case for a range of Reynolds numbers ranging from 140 to 840. The velocity and temperature profiles were plotted and interpreted on three different sections placed sequentially upstream, mid-stream and downstream of the deflector. Total heat exchange at the bottom wall, outlet fluid temperature, perforated PFE deflector performance and pressure loss is presented for different cases studied and for different Reynolds numbers.

Findings

The results show that although the perforated deflector improves the heat transfer, it also results in additional pressure losses; the study also showed the existence of a limiting velocity beyond which the perforation effect on the improvement of the heat exchange decreases until the same performance of the solid deflector is achieved.

Originality/value

The main originality of this work is to show a 3D analysis for a perforated baffle as heat exchanger application.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2